Temperature cycling test chambers are core equipment for product reliability verification, with adaptability directly affecting product performance and service life. Industry-specific application scenarios and testing standards vary greatly, making standard equipment unable to meet refined needs. With 20 years of industry expertise, LABCOMPANION has developed customized temperature cycling test solutions targeting pain points in three core sectors—automotive components, medical devices, electronic & electrical products—relying on precise temperature control technology to become a trusted partner for enterprises.
I. Automotive Components Industry: Solving Outdoor Condition Simulation & Batch Testing Issues
Automotive components must withstand extreme outdoor temperature and humidity, with the weather resistance of sensors, connectors and other core parts critical to driving safety. Key pain points: insufficient temperature range of standard equipment for simulating full working conditions (-30℃ cold start, 70℃ high-temperature exposure); low batch testing efficiency causing production bottlenecks; strict industry standards requiring traceable, repeatable test data.
LABCOMPANION’s customized rapid temperature cycling test chambers offer targeted solutions: -40℃~85℃ temperature range for full-scenario testing, ±0.3℃ control accuracy and ≤±0.5℃ fluctuation to ensure uniform temperature field; programmable LED controller supporting over 200 preset programs to boost batch efficiency; intelligent data acquisition system for real-time recording and compliant report generation, meeting quality traceability needs. This solution serves leading automotive component enterprises, testing brake system sensors and control modules to identify potential defects, ensuring stable operation under harsh conditions and compliance with industry standards.
II. Medical Device Industry: Adapting to Sterility & Precision Temperature Control for Compliance Testing
Medical devices are directly linked to patient safety, requiring reliability testing to balance precision temperature control and sterile cleanliness. Core pain points: precise temperature control for drying syringes, catheters and other consumables to avoid material damage; high-humidity simulation for monitors in hospital environments; compliance with ISO 13485 and other standards for market access.
LABCOMPANION provides an integrated solution of temperature-humidity chambers and precision ovens. Precision ovens with 304 stainless steel sealed inner chambers offer ±0.3℃ accuracy, 60℃-120℃ drying range to protect consumables; temperature-humidity chambers simulate 55℃+95%RH environment, with CE and ISO9001 certifications for data compliance; customizable large-capacity chambers support full-scale testing of large medical devices. Widely used in manufacturing and pharmaceutical distribution, it ensures sterility and compliance in production, and verifies cold chain packaging reliability in distribution.
III. Electronic & Electrical Industry: Addressing High-Precision Aging Testing for PCBs & Components
The service life of electronic & electrical products (PCBs, capacitors, resistors) depends on thermal stability. Key pain points: precise temperature control for PCB drying to remove solder paste moisture and prevent cold soldering; uniform temperature field for component high-temperature aging; adjustable multi-temperature zones for research to ensure data repeatability.
LABCOMPANION’s combined solution of precision ovens and temperature cycling chambers meets diverse needs: precision ovens with convection heating system (≤2℃ uniformity, ±0.3℃ accuracy) for 100℃ PCB drying; temperature cycling chambers (-40℃~85℃) with programmable cycles for component aging; research-grade equipment (40℃-200℃, 98% data repeatability) for academic institutions. It reduces cold soldering rates in production and supports electronic material research in academia.
IV. Full-Process Service Support: End-to-End Assurance from Requirement to Implementation
LABCOMPANION’s core competitiveness lies in both tailored products and full-process support. Professional teams conduct on-site assessments to design solutions, with post-delivery installation, commissioning and training. 16 national service centers, with the Dongguan headquarters covering the Pearl River Delta, offer 2-hour response, on-site support within 3 days and 1-year full equipment warranty.
From automotive component condition simulation to medical device compliance testing and electronic product aging verification, LABCOMPANION resolves industry pain points with customized technologies. Backed by 20 years of experience and authoritative certifications, it continues to provide reliable testing support for core industries, helping enterprises improve product quality and safety.
Core Logic: Match testing requirements, balance performance and full life-cycle cost, and avoid over-specification for under-utilization.
I. Core Testing Requirements
1. Temperature Change Rate
Clarify the loaded rate and deviation requirements (e.g., ≤±0.5℃/min), and match the application scenarios:
l 5–10℃/min for consumer electronics
l 10–20℃/min for automotive/aerospace industries
2. Temperature & Humidity Range
Cover the specified testing standards:
l -40~85℃ for new energy products
l -55~125℃ for aerospace products
Select models with 20%–98%RH range if humidity testing is required.
3. Sample Compatibility
l The chamber volume should be ≥ 3 times the sample volume.
l Dynamic load compensation is required for high-heat-capacity samples (e.g., metal components).
II. Hardware Performance
1. Refrigeration System
Prioritize dual-compressor cascade systems equipped with imported brands (Danfoss/Copeland) and eco-friendly refrigerants (R404A/R23).
2. Air Duct & Heating System
Adopt scroll diversion + baffle design, with 0–100% linear adjustment of heating tubes.
3. Sensors
Use imported PT1000 sensors with a sampling frequency of ≥ 10 times/second.
III. Software Functions
1. Algorithm
PID closed-loop control + adaptive temperature zone compensation, supporting custom rate curve setting.
2. Data Management
Automatic data recording and export (Excel/CSV format), with support for remote control and multi-channel alarm.
3. Safety Features
Over-temperature protection, compressor overload protection, water shortage protection, etc. Explosion-proof pressure relief devices are mandatory for flammable and explosive samples.
IV. Full Life-Cycle Cost
1. Procurement Cost
Select models based on actual needs; avoid blind pursuit of high rates (the price of 10℃/min models is 1.5–2 times that of 5℃/min models).
2. Operation Cost
Prefer inverter compressors to reduce electricity consumption by 15%–20%.
3. Maintenance Cost
Choose models with modular structure, and confirm annual free calibration services.
V. Expandability & Compatibility
Support post-purchase installation of humidity, explosion-proof, and data acquisition modules.
Compatible with upper computers and testing fixtures for automated testing.
VI. Manufacturer Services & Qualifications
Provide customized solutions and loaded rate test reports.
Ensure the equipment has passed ISO 9001 and CE certifications, complying with the GB/T 2423.22 standard.
Ø Selection Case
Testing Scenario: Automotive motor controller testing (8kg, AEC-Q100 standard)
Recommended Model: 150L chamber with 10℃/min loaded rate, -40~125℃ temperature range, and explosion-proof function.
Benefits: Balances testing requirements and cost, improving testing efficiency by 4 times.