แบนเนอร์
บ้าน

ห้องจำลองสิ่งแวดล้อม

ห้องจำลองสิ่งแวดล้อม

  • Customization Process of Walk-in Environmental Test Chambers: A Professional Guide from Requirement to Delivery
    Dec 03, 2025
        As core equipment for industrial testing, the customization level of walk-in environmental test chambers directly determines testing accuracy and efficiency. This article breaks down the entire process from requirement communication to final delivery, helping enterprises clearly grasp the key nodes of customization. 1. Accurate Requirement Communication: Clarify Core Parameters The first step in customization is to define core technical parameters, which lay the foundation for subsequent design. Size Range: Covering small test spaces of 4m³ to large walk-in test chambers of 260m³, the size should be determined based on the volume, quantity of test samples and operational space requirements. Temperature & Humidity Range: It can generally achieve temperature control of -70℃~+180℃ and humidity control of 30%R.H~98%R.H. For special scenarios, the range can be further expanded to -73℃~+177℃ (integral type). Control Method: Multiple options are available, from basic microchip LED displays to PLC programmable logic controller touch screens, and can also be upgraded to remote centralized control systems to meet different operation and management needs. Structure Type: Selection should be based on application scenarios, with parameters of three mainstream types as follows: Test Type Temperature Range Humidity Range Temperature Change Rate Integral Type -73℃~+177℃ 30%~95%RH 4~5℃/min, or faster Assembled Type -68℃~+85℃ 30%~95%RH 1~2℃/min Steady-state Type -20℃~+50℃ 30%~95%RH N/A 2. Scheme Design & Confirmation: Balance Professionalism and Practicality After clarifying requirements, the technical team will issue a customization scheme, which mainly includes three parts: Structural Design: Based on size and type, plan the layout of the test chamber's door, observation window and sample rack to ensure operational convenience and airtightness.  System Matching: Equip with corresponding refrigeration, heating, humidification and dehumidification systems to ensure temperature and humidity control accuracy, and configure hardware and software according to the control method. Compliance Verification: The scheme must conform to relevant industry standards (such as GB/T, IEC, etc.), and confirm with the customer whether it needs to meet specific industry testing specifications. After scheme confirmation, detailed drawings and technical agreements will be generated to clarify the rights, obligations and delivery standards of both parties. 3. Production & Manufacturing: Strictly Control Process and Quality Entering the production stage, the process will be controlled around the two cores of "accuracy" and "stability": Core Component Procurement: Select high-reliability compressors, sensors, controllers and other core components to ensure long-term operational stability of the equipment. Modular Production: Assembled equipment adopts modular manufacturing to reduce on-site installation errors; integral equipment undergoes integrated assembly and preliminary debugging. Factory Inspection: Each piece of equipment must undergo no-load temperature and humidity calibration and operational stability testing. Only after confirming that the parameters meet the design requirements can shipment be arranged. 4. Installation, Commissioning & Delivery: Ensure On-site Application After the equipment arrives at the site, the professional team will provide full-process services: On-site Installation: Carry out equipment positioning, pipeline connection and circuit debugging according to site conditions; for assembled equipment, ensure airtight connection of each module. Accuracy Calibration: Combine the customer's testing needs, use professional instruments to perform on-site calibration of temperature and humidity uniformity and fluctuation to ensure compliance with test requirements. Training & Delivery: Provide equipment operation and maintenance training for the operation team, and deliver technical materials such as operation manuals and calibration reports to complete the final acceptance.     Would you like me to supplement an English Version of Walk-in Environmental Test Chamber Customization Requirement Confirmation Form? It will list key parameter check items and common questions to facilitate quick alignment of requirements between you and your customers.
    อ่านเพิ่มเติม
  • Operation Notes for Rapid Temperature Change Test Chambers: Don't Overlook These Key Points
    Dec 02, 2025
        As a core device for environmental reliability testing, the rapid temperature change test chamber is widely used in electronics, automotive, and other industries due to its ability to achieve drastic temperature variations. Its high/low temperature performance and rapid temperature change capability directly affect test data accuracy, operational safety, and equipment service life. Below are the core operational precautions: I. Pre-Startup: Conduct Basic Inspections Comprehensive pre-startup checks are critical for preventing malfunctions, focusing on "medium, status, and connections": Medium & Pipeline Inspection: Verify that the cooling system's liquid level and pressure meet standards, with no pipeline leakage or blockage. Check the refrigerant system pressure to avoid cooling failure or compressor damage due to insufficient medium. Equipment Status Confirmation: Ensure the chamber door seal is intact (poor sealing reduces temperature change rate and increases energy consumption). Keep the chamber interior clean and free of debris, and ensure sensor surfaces are free of oil and dust to avoid temperature measurement interference. Electrical Connection Check: Confirm power and control cables are securely connected, and the grounding resistance complies with specifications (≤4Ω) to prevent electric leakage or electromagnetic interference. II. Sample Placement: Prioritize Scientific Standards Proper sample placement ensures test authenticity, adhering to the principles of "no interference, no overrun, easy monitoring": Weight & Volume Control: Total sample weight must not exceed the rated load. Single sample volume ≤ 1/3 of the working chamber. Maintain a distance of ≥5cm from the chamber walls and sensors to avoid uneven local temperature caused by airflow blockage. Sample Compatibility: Never place flammable, explosive, corrosive, or toxic samples. For heat-generating samples, specify power in advance to ensure compatibility with the equipment's heat dissipation capacity and prevent overload. Fixing & Wiring Specifications: Secure samples with dedicated brackets to prevent displacement during temperature changes. Use high-temperature resistant insulated wires for energized tests to avoid short circuits and aging. III. Operation Process: Precise Monitoring & Adjustment Dynamic monitoring during operation guarantees test reliability, focusing on "parameters, status, and abnormalities": Parameter Setting & Verification: Set temperature range, change rate, and other parameters per standards and re-verify. Adjust only after the equipment stabilizes to avoid system fluctuations. Operation Status Monitoring: Real-time monitor temperature curves and indicator lights to ensure the deviation between actual and set temperatures ≤ ±1℃. Listen for abnormal noises from components like the compressor and shut down immediately if detected. Abnormal Handling: If the equipment triggers over-temperature, overload, or other protections, do not force reset. First troubleshoot the cause (e.g., abnormal sample heating, unstable voltage) before restarting. IV. Post-Test: Standardized Shutdown & Maintenance Proper post-test procedures extend equipment life, following three steps: "cooling, cleaning, and recording": Gradual Cooling to Prevent Damage: After testing, open the door only when the chamber temperature drops to room temperature (20-25℃) and the temperature difference with the outside ≤10℃, avoiding sample condensation or chamber wall damage. Cleaning & Maintenance: Wipe the chamber interior and door seal with a dry cloth. Use dedicated cleaners for leaked substances. Remove dust from the equipment exterior to ensure unobstructed heat dissipation. Data & Status Recording: Document test parameters, curves, and abnormalities. After turning off the power, cut off the cooling medium supply and organize wires and brackets. V. Long-Term Maintenance: Extend Equipment Lifespan Regular maintenance prolongs service life: Monthly: Check the door seal elasticity and replace if aged. Quarterly: Clean the condenser and evaporator. Annually: Arrange professional inspection and maintenance of the compressor and refrigeration system. The core of test chamber operation is "safety first, standardized operation, and precise monitoring." Strict adherence to the above precautions ensures safety, reliable test data, and extended equipment life, providing strong support for product reliability verification.
    อ่านเพิ่มเติม
  • Energy-Saving Environmental Test Chamber: Safeguard Your Long-Term Product Costs
    Dec 01, 2025
    For enterprises in manufacturing, electronic technology, and related industries, product reliability testing is a critical quality assurance link. However, the operational costs of environmental test chambers—core testing equipment—are often overlooked. Many businesses focus solely on testing precision during procurement, only to be troubled by high energy bills in long-term use. Our energy-saving environmental test chamber effectively resolves the conflict between "accurate testing" and "cost control," providing comprehensive support for product lifecycle cost management. Core Energy-Saving Feature: Intelligent Refrigeration System Regulation As the primary energy-consuming component of environmental test chambers, the energy regulation technology of the refrigeration system directly determines the equipment’s energy efficiency. On the premise of meeting core technical indicators, this test chamber innovatively integrates multiple energy adjustment measures to achieve intelligent dynamic control of refrigeration capacity. The system precisely regulates evaporation temperature via the controller and links it with a hot gas bypass energy adjustment mechanism, matching refrigeration demand in real time based on the required cooling rate and target temperature range. When approaching the set low temperature, the system automatically reduces refrigeration capacity to avoid temperature overshoot—a common issue in traditional models—ensuring test stability. During the constant temperature phase, it abandons the energy-intensive "hot-cold balance" mode, optimizing energy utilization at the source. Verified in real operating conditions, the energy-saving effect reaches up to 30%, significantly reducing long-term operational costs, especially for enterprises requiring 24/7 continuous operation. Precision & Energy Efficiency: Optimized Heating System Power Control Refined control of the heating system further enhances the equipment’s energy-saving advantages and temperature control precision. The system adopts a synergistic control scheme of temperature controllers and thyristors: the temperature controller collects real-time temperature signals and issues control commands, while thyristors precisely adjust the heater’s power output. When the temperature is far below the set value, thyristors deliver full power for rapid heating. As the temperature gradually approaches the set value, the output power decreases incrementally; once the target temperature is reached, power output stops immediately. This on-demand power distribution mode eliminates energy waste and ensures precise temperature control, providing a stable and reliable temperature environment for tests. For example: When the internal temperature is significantly lower than the set value, thyristors operate at full power, and the heater runs at maximum load to ensure rapid temperature rise. As the temperature nears the target, the thyristor’s output power gradually decreases. Once the target temperature is achieved, the thyristor stops power output immediately, and the heater enters standby mode. This "on-demand power supply" mode eliminates the drawback of "frequent start-stop" in traditional heating systems—avoiding ineffective energy consumption while greatly improving temperature control precision, making it particularly suitable for test scenarios requiring high temperature stability. Dual-System Synergy: Safeguard Enterprise Costs From the refrigeration system’s intelligent energy adjustment to the heating system’s precision power control, our environmental test chamber centers on dual-system collaborative energy-saving technology. While ensuring accurate test data, it maximizes energy cost reduction. Choosing our test chamber not only guarantees product testing quality but also enables scientific management of enterprise operational costs, providing peace of mind throughout your product R&D and production processes. In addition, if your enterprise is seeking a cost-effective environmental test chamber or struggling with high energy consumption from existing equipment, we recommend focusing on our energy-saving model. Let professional equipment protect your product quality while reducing costs and enhancing efficiency for your business.
    อ่านเพิ่มเติม
  • How to Achieve Precise Temperature Control in High-Low Temperature Test Chambers? The Q8 Series Controller Has the Answer
    Nov 29, 2025
    As the "control core" of high-low temperature test chambers, the Q8 Series Controller delivers stable support for environmental reliability testing with full-scenario adaptability, ultra-high precision, and multiple safety designs. Whether for extreme testing of electronic components or weather resistance verification of new materials, its rich functions and user-friendly design meet the rigorous requirements of scientific research, industrial production, and other fields. I. Intuitive Touch Interaction: Doubling Operational Efficiency Adopting full-touch interaction, the Q8 Controller features a high-definition touchscreen with sensitive response, enabling parameter setting, program startup, and other operations with simple finger taps—no professional training required for new users. The customizable interface allows pinning frequently used functions, significantly reducing configuration time for complex tests and adapting to high-frequency, multi-batch testing scenarios. II.  0.01-Class Precision: Core Guarantee for Accurate Data Equipped with a high-precision data acquisition module and intelligent PID algorithm, the Q8 achieves 0.01-class temperature control precision, capturing real-time temperature fluctuations inside the chamber and adjusting rapidly. Within the wide temperature range of -80℃~150℃, the fluctuation is stabilized at ±0.01℃, avoiding temperature deviations in sensitive tests such as semiconductor and aerospace component testing, and providing authoritative data for product reliability evaluation. III. Versatile Adaptability: Meeting Multi-Scenario Needs Compatible with PT100, thermocouples, and other sensors, the Q8 supports flexible switching to reduce equipment upgrade costs. Its cooling output function precisely controls the refrigeration system to minimize energy waste, while the transmission output converts temperature data into standard electrical signals, seamlessly connecting to data acquisition systems for automatic upload and traceability of test data. IV.  Massive Storage: Intelligent Manager for Complex Processes Catering to multi-stage testing needs (e.g., automotive parts), the Q8 supports storage of 100 process programs, each with up to 50 steps. Operators can preset parameters such as temperature and holding time to simulate working conditions like day-night cycles and extreme temperature shocks. Programs can be activated with one click for continuous operation, enhancing the standardization and efficiency of batch testing. V.  EVT Function: Early Warning Barrier for Test Safety The Q8’s EVT (Event Verification Test) function monitors temperature abnormalities, sensor failures, and other issues in real time. When thresholds are triggered, it activates audio-visual alarms and records fault information. Supporting hierarchical fault handling, it automatically adjusts parameters to resume testing for minor anomalies and shuts down urgently for severe faults, safeguarding unattended long-duration tests. Conclusion: Empowering Test Reliability with Strong Capabilities Integrating intuitive touch operation, 0.01-class precision, versatile adaptability, and comprehensive safety guarantees, the Q8 Controller fully meets the core requirements of high-low temperature testing. Whether for precise scientific research or production quality control, its stable performance and intelligent design serve as the core competitiveness of test chambers, helping industries improve product quality.
    อ่านเพิ่มเติม
  • Got Your Temperature Test Chamber? Here’s What You Must Do Next!
    Nov 28, 2025
    I. Receipt Inspection  1. Physical Verification Confirm equipment model, specifications, and serial number match the contract/packing list to avoid wrong delivery. Inspect the cabinet, door, and control panel for transportation damage (dents, deformation) and ensure pipelines/wiring are intact without loosening. 2. Accessory & Document Check Required accessories: Power cord, sample shelves, sealing rings, wrenches, and other tools (verify against the packing list). Technical documents: Operation/maintenance manual, calibration certificate, warranty card, and qualification certificate (all mandatory for after-sales service). 3. Abnormal Handling In case of damage or missing items: Immediately take photos (overall equipment, damaged details, packing list), notify the supplier within 24 hours to submit a claim, and sign the "Acceptance Objection Form" for documentation. II. Installation & Deployment (Compliant Installation Ensures Performance) 1. Environment Requirements (Must Meet the Following) Floor: Flat and sturdy, with load-bearing capacity ≥1.2 times the equipment weight (to avoid test errors caused by vibration). Space: ≥30cm ventilation gap around the cabinet; keep away from heat sources, water sources, dust, and strong electromagnetic interference. Power supply: Match the rated voltage (e.g., 380V three-phase five-wire/220V single-phase), grounding resistance ≤4Ω, and equip an independent air switch (power ≥1.2 times the equipment's rated power). Environment: Room temperature 15-35℃, humidity ≤85%RH (no condensation); water-cooled models require pre-connected cooling water circuits meeting specifications. 2. Basic Installation Steps Level the equipment: Adjust anchor bolts and use a level to confirm horizontal alignment (to prevent uneven stress on the refrigeration system). Wiring inspection: Connect the power supply per the manual and ensure correct neutral/grounding connections (a common cause of electrical failures). Consumable check: Confirm refrigerant and lubricating oil (if applicable) are properly filled with no leakage. III. Commissioning (Core: Verify Performance Compliance) 1. First Startup Procedure (1) Recheck power/pipeline connections before power-on; switch on after confirmation. (2)Panel self-test: Ensure the display shows no error codes and buttons/indicators function normally. (3)No-load operation (2-4 hours): Set a common temperature range (e.g., -40℃~85℃) and monitor temperature fluctuation ≤±0.5℃ (meets industrial standards). Check door sealing (no obvious air leakage), operating noise ≤75dB, and normal start/stop of refrigeration/heating systems. 2. Load Verification (Simulate Actual Usage) Place a load equivalent to the test sample (weight/volume ≤80% of the equipment's rated load) without blocking air ducts. Set the target temperature and holding time; record if the heating/cooling rate meets technical parameters (e.g., -40℃~85℃ heating time ≤60 minutes). Alarm test: Simulate power failure, over-temperature, or door-open timeout to confirm timely alarm response (audio-visual alarm + shutdown protection). IV. Emergency Handling & After-Sales Coordination 1. Common Fault Resolution Error codes: Refer to the "Troubleshooting" section in the manual (e.g., E1=Over-temperature, E2=Power abnormality). Sudden failures: (e.g., electric leakage, abnormal noise, refrigeration failure) Immediately cut off power, stop use, and contact the supplier's technical support (do not disassemble independently). 2. After-Sales Support Retain the supplier's after-sales contact (phone + email) and confirm the warranty period (usually 1 year for the whole machine). Maintenance records: Request a "Maintenance Report" after each service and file it for future tracing.
    อ่านเพิ่มเติม
  • Core Faults and Troubleshooting of Thermal Shock Chambers
    Nov 27, 2025
    I. Temperature-related Issues Failure to reach set temperature: Check operation of heater/compressor, replace if damaged; calibrate sensor, replenish refrigerant if leaking; replace aging sealing strips. Slow shock rate: Clean air duct filter/condenser dust; inspect fan and switching valve, lubricate or replace if stuck.  Large temperature fluctuation: Calibrate thermostat PID parameters; reduce sample load (≤30% of chamber volume), place evenly without blocking air ducts. II. Refrigeration-related Issues Slow cooling in low-temperature zone: Clean condenser fins; detect leaks and replenish refrigerant; activate defrost program or replace expansion valve. Frequent compressor on/off: Stabilize power supply voltage, improve equipment room ventilation; replenish refrigerant or replace refrigeration oil. High-pressure alarm: Clean condenser and inspect cooling fan. III. Mechanical-related Issues Poor door sealing: Adjust door latch, replace aging sealing strips; calibrate chamber levelness. Stuck transfer mechanism: Clean guide rail debris and lubricate; calibrate position sensor. Abnormal noise (fan/valve): Add lubricating grease, replace worn bearings; clean valve impurities. IV. Electrical-related Issues Failure to start: Reset emergency stop button, inspect power supply/air switch; rewire if grounding is poor. Abnormal display: Reconnect cable, test power module; restore factory settings after backing up parameters. Alarm code triggered: Troubleshoot per code prompt (e.g., E1 overheating: check heater/sensor); contact manufacturer for repeated alarms. V. Key Notes Power off before troubleshooting; refrigeration system maintenance requires professional operation. Clean filter weekly, inspect seals monthly, and calibrate sensor annually.
    อ่านเพิ่มเติม
  • Key Differences in Using Environmental Test Chambers Between Summer and Winter
    Nov 26, 2025
    The core difference lies in the impact of ambient temperature and humidity variations on equipment operating efficiency, energy consumption, and test accuracy. Targeted measures for temperature/humidity control, heat dissipation/anti-freezing, and maintenance are required. Specific differences and precautions are as follows: I. Core Difference Comparison Table Dimension Summer Operation Characteristics Winter Operation Characteristics Ambient Conditions High temperature & high humidity (room temp: 30-40℃, RH: 60%-90%) Low temperature & low humidity (room temp: 0-15℃, RH: 30%-60%) Equipment Load High refrigeration system load, prone to overload High heating system load; humidification compensation required for certain models (e.g., temperature-humidity chambers) Impact on Test Accuracy High humidity causes condensation, affecting sensor accuracy Low temperature leads to pipeline freezing; low humidity may reduce stability of humidity tests Energy Consumption High refrigeration energy consumption High heating/humidification energy consumption   II. Season-Specific Precautions (1) Summer Operation: Focus on High Temperature/High Humidity/Overload Prevention 1. Ambient Heat Dissipation Management Reserve ≥50cm ventilation space around the chamber; avoid direct sunlight or proximity to heat sources (e.g., workshop ovens, air conditioner outlets). Ensure laboratory air conditioning operates normally, maintaining room temperature at 25-30℃. If room temp exceeds 35℃, install industrial fans or cooling devices to assist heat dissipation and prevent refrigeration system overload protection triggered by high ambient temperatures. 2. Moisture & Condensation Control Regularly clean chamber door gaskets with a dry cloth to prevent sealant aging and air leakage caused by high humidity. After humidity tests, open the chamber door promptly for ventilation and wipe off condensation to avoid moisture damage to sensors (e.g., humidity sensors). 3. Equipment Operation Protection Avoid prolonged continuous operation of extreme low-temperature tests (e.g., below -40℃). Recommend shutting down for 1 hour after 8 hours of operation to protect the compressor. Periodically inspect refrigeration system radiators (condensers) and remove dust/debris (blow with compressed air monthly) to ensure heat dissipation efficiency. (2) Winter Operation: Focus on Anti-Freezing/Low Humidity/Startup Failure Prevention 1. Ambient Temperature Guarantee Maintain laboratory temperature above 5℃ (strictly follow 10℃ if specified as the minimum operating temperature) to prevent pipeline freezing (e.g., refrigeration capillaries, humidification pipes). For unheated laboratories, install an insulation cover (with ventilation holes reserved) or activate the "preheating mode" (if supported) before testing. 2. Humidification System Maintenance Use distilled water in the humidification tank to avoid pipe blockage from impurity crystallization at low temperatures. Drain water from the humidification tank and pipelines during long-term non-use to prevent freezing-induced component damage. 3. Startup & Operation Specifications In low-temperature environments, activate "standby mode" for 30 minutes preheating before setting test parameters to avoid compressor burnout from excessive startup load. If startup fails (e.g., compressor inactivity), check power voltage (prone to instability during winter peak hours) or contact after-sales to inspect pipeline freezing. 4. Low Humidity Compensation For low-humidity tests (e.g., ≤30% RH), winter dryness may cause rapid humidity. Adjust humidification frequency appropriately and use the "humidity calibration" function to reduce fluctuations. III. General Precautions (All Seasons) Calibrate temperature/humidity sensors quarterly to ensure data accuracy. Clean air filters monthly to maintain airflow circulation. Arrange test samples evenly to avoid blocking internal air ducts and ensure temperature/humidity uniformity. For long-term non-use: Run the chamber for 1 hour monthly in summer (moisture prevention) and drain pipeline water in winter (freezing prevention). By addressing seasonal environmental variations, equipment service life can be extended, and test failures caused by temperature/humidity fluctuations avoided—aligning with the high precision and stability requirements of the industrial test equipment industry.    
    อ่านเพิ่มเติม
  • Differences Between High-Low Temperature Test Chamber and Thermal Shock Chamber
    Nov 26, 2025
    In industrial product reliability testing, high and low temperature test chambers and temperature shock test chambers are core environmental testing equipment, both simulating extreme temperatures to verify product durability. However, they differ fundamentally: the former focuses on gradual temperature-humidity cycles, while the latter on instantaneous thermal shock. Clarifying these differences is key to matching test needs and ensuring data validity. 1. Rate High-Low Temperature Test Chamber: Slow, with a regular rate of 0.7∼1 ℃/min, and rapid versions can reach 5∼15 ℃/min. Thermal Shock Chamber: Abrupt, with instant switching. 2. Structure High-Low Temperature Test Chamber: Single-chamber structure, integrating heating, refrigeration, and humidification functions. Thermal Shock Chamber: Multi-chamber structure, including high-temperature chamber, low-temperature chamber, and test chamber. 3. Temperature Continuity High-Low Temperature Test Chamber: The temperature changes smoothly without any "shock sensation". Thermal Shock Chamber: The temperature changes by leaps and bounds, with a common temperature range of −40∼150℃. 4. Application High-Low Temperature Test Chamber: Suitable for temperature endurance testing of general products such as electronic devices, household appliances, and building materials. Thermal Shock Chamber: Suitable for shock resistance testing of temperature-sensitive products such as automotive electronics, semiconductors, and aerospace components. 5. Core Position & Test Purpose High-Low Temperature Test Chamber: Simulates gradual temperature (and humidity) changes to test product stability under slow thermal variation (e.g., electronic devices’ performance after gradual cooling to -40℃ or heating to 85℃). Thermal Shock Chamber: Simulates abrupt temperature switching (≤30s transition) to test product resistance to extreme thermal shock (e.g., auto parts adapting to drastic day-night temperature changes, aerospace components’ tolerance to sudden high-low temperature shifts). Summary The high and low temperature test chamber is a "slow-paced endurance test", while the temperature shock chamber is a "fast-paced explosive power challenge". Just based on whether the product will encounter "sudden cold and heat" in the actual usage scenario, the precise selection can be made.
    อ่านเพิ่มเติม
  • 3-Zone Thermal Shock Chamber: Introduction & Applications
    Nov 25, 2025
    The 3-zone thermal shock chamber is a test device for simulating extreme temperature shock environments, composed of a high-temperature chamber, a low-temperature chamber, and a test chamber. I.  Detailed Introduction 1.1 Working Principle The high-temperature chamber achieves precise temperature control via heaters and a PID logic circuit, while the low-temperature chamber maintains low temperatures through a refrigeration system. During testing, the sample stays stationary in the test chamber; the control system switches dampers to rapidly inject high/low-temperature air into the test chamber for thermal shock tests. 1.2 Structural Features Adopting an upper-middle-lower structure (upper: high-temperature; lower: low-temperature; middle: test chamber), its internal/external materials are mostly stainless steel. Insulation materials (superfine glass fiber, polyurethane foam) ensure excellent thermal insulation. A test hole on the left facilitates external power supply and load wiring for component testing. 1.3 Performance Parameters Programmable temperature shock range: typically -40℃ to +150℃; temperature control accuracy: ±0.2℃; chamber uniformity: ±2℃; maximum shock duration: 999h59min; adjustable cycles: 1-999 times. 1.4 Control & Operation Equipped with a large color LCD touch controller (Chinese/English interface), it supports independent setting of multiple test specifications, and features real-time status display and curve visualization. 1.5 Safety Protection Comprehensive protections include power overload, leakage, control circuit overload/short-circuit, compressor, grounding, and over-temperature protection, ensuring reliable long-term operation. II. Main Applications Electronics Industry: Tests performance/reliability of electronic components, PCBs, semiconductors under extreme temperatures to ensure stable operation and reduce after-sales failures. Automotive Industry: Evaluates temperature resistance of auto parts (engine, battery, electronic control system, interior materials) by simulating climatic temperature changes, guaranteeing vehicle performance and safety. Aerospace Field: Tests aerospace electronics, sensors, aero-engine blades, and materials under thermal shock to ensure flight safety. Materials Science: Assesses thermal expansion/contraction and weather resistance of materials, providing data for R&D and application of new materials.
    อ่านเพิ่มเติม
  • How to Choose the Right Thermal Shock Chamber: Water-Cooled or Air-Cooled?
    Nov 24, 2025
    When selecting between water-cooled and air-cooled types of thermal shock chambers, a comprehensive evaluation must be conducted based on core factors such as test requirements, site conditions, and budget constraints. These two types exhibit significant differences in performance, installation, maintenance, and other aspects. Below is a detailed selection guide: I. Cooling Principle Water-cooled thermal shock test chambers dissipate heat via a water-cooled condenser using deionized or distilled water circulation. Air-cooled models drive ambient air flow with fans, completing heat exchange through an air-cooled condenser for heat dissipation. II. Based on Test Specifications & Performance Requirements  Air-cooled: Ideal for small-scale tests (≤100L chamber), standard temperature range (-40℃~150℃), and moderate cooling speed needs (e.g., general electronic component testing). Water-cooled: Preferred for high-demand scenarios (cooling rate ≥50℃/min vs. air-cooled 30℃/min), such as chip wafers, new energy batteries, or aerospace materials testing, ensuring stability for long-duration (≥1000h) trials. III. Site Conditions Air-cooled: Suitable for limited space or mobile use—no extra piping required, just power supply and good ventilation (air-conditioned environment recommended). Water-cooled: Requires dedicated space for cooling towers/pumps, accessible water supply/drainage (e.g., industrial workshops or fixed labs); avoid small/non-drainable areas. IV. Cost & Maintenance  Air-cooled: Lower initial investment and maintenance cost—only need to clean radiators and check fans; no water leakage risk.  Water-cooled: Higher upfront cost (including supporting equipment) and maintenance fee (water treatment/piping checks); cost-effective for long-term high-precision testing. V. Noise Requirements Air-cooled: Acceptable for industrial workshops (noise ≥75dB). Water-cooled: Suitable for quiet environments (e.g., precision labs) with noise ≤60dB. VI. Core Selection Recommendations Water-cooled: Industrial scenarios with high power, continuous operation, high temperatures, or strict temperature control accuracy (stable water supply required). Air-cooled: General laboratories with limited space, intermittent use, no water supply, and demand for low cost and convenience.
    อ่านเพิ่มเติม
  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    อ่านเพิ่มเติม
  • Industrial Precision Ovens: The Key to Precise Temperature Control
    Nov 21, 2025
    In modern industrial manufacturing, industrial precision ovens are key "temperature artisans". They are widely used in electronics, aerospace, automotive, medical and other fields, providing stable performance and reliable quality for products. Gaining an in-depth understanding of their principles not only clarifies the scientific logic of industrial production, but also helps practitioners use equipment efficiently to improve benefits. (I) Heating System: The Source of Heat The heating system is the "heat source core" of the oven. The thermostat controls the thyristor through signals to adjust the heater power and regulate heat output: full power is supplied when the temperature is much lower than the set value, power gradually decreases when approaching the set value, and output stops when the set value is reached. This is energy-efficient and achieves high temperature control precision. (II) Air Circulation System: The Messenger of Heat Transfer Composed of a blower motor, extended shaft and multi-wing fan blades, the air circulation system is critical for heat transfer. The motor drives the wind wheel to rotate and form air flow, which is evenly delivered to all areas of the oven through optimized air ducts, avoiding dead corners and temperature differences. Hot air fully contacts materials during circulation to achieve rapid and uniform heating, which is essential for high-precision processes such as electronic chips and optical lenses. (III) Electrical Control System: The Core of Precise Operation The electrical control system is the core control unit of the oven. The Q8 series electrical control system adopts full-touch operation with a control precision of 0.01 level and supports multiple sensor adaptations. It has 100 built-in processes (50 steps per group), including EVT, cold output and transmission output functions. The DO channel features safe isolation and arc suppression design, enabling convenient, accurate and reliable operation that adapts to diverse control scenarios. Future Outlook: Technological Innovation Leads Development In the future, industrial precision ovens will focus on three major innovation directions: intelligence, energy conservation and environmental protection, and special process adaptation, continuously innovating to shape a new industrial future.          
    อ่านเพิ่มเติม
1 2 3
รวมทั้งหมด3หน้า

ฝากข้อความ

ฝากข้อความ
หากคุณสนใจผลิตภัณฑ์ของเราและต้องการทราบรายละเอียดเพิ่มเติม โปรดฝากข้อความไว้ที่นี่ เราจะตอบกลับคุณโดยเร็วที่สุด
ส่ง

บ้าน

สินค้า

วอทส์แอพพ์

ติดต่อเรา